49 research outputs found

    Spill-Resistant Alkali-Metal-Vapor Dispenser

    Get PDF
    A spill-resistant vessel has been developed for dispensing an alkali-metal vapor. Vapors of alkali metals (most commonly, cesium or rubidium, both of which melt at temperatures slightly above room temperature) are needed for atomic frequency standards, experiments in spectroscopy, and experiments in laser cooling. Although the present spill-resistant alkali-metal dispenser was originally intended for use in the low-gravity environment of outer space, it can also be used in normal Earth gravitation: indeed, its utility as a vapor source was confirmed by use of cesium in a ground apparatus. The vessel is made of copper. It consists of an assembly of cylinders and flanges, shown in the figure. The uppermost cylinder is a fill tube. Initially, the vessel is evacuated, the alkali metal charge is distilled into the bottom of the vessel, and then the fill tube is pinched closed to form a vacuum seal. The innermost cylinder serves as the outlet for the vapor, yet prevents spilling by protruding above the surface of the alkali metal, no matter which way or how far the vessel is tilted. In the event (unlikely in normal Earth gravitation) that any drops of molten alkali metal have been shaken loose by vibration and are floating freely, a mesh cap on top of the inner cylinder prevents the drops from drifting out with the vapor. Liquid containment of the equivalent of 1.2 grams of cesium was confirmed for all orientations with rubbing alcohol in one of the prototypes later used with cesium

    Ball[park]: Urban Re-programming in an Existing Infrastructure

    Get PDF
    Baseball has been observed as America's favorite pastime since in inception during the industrial revolution. This revolution is an earmark in America's history that spawned development throughout the country's interior, especially in waterfront towns. Establishing a connection to a water source was a major way for industrial towns to move goods to market and generate power. Many of these towns lost their reason for being with the introduction of railroad lines and interstate highway systems. This fact left most towns mere shadows of a remnant industry. This thesis will explore a way to re-build and revitalize infrastructure and community within an urban context while preserving a fragment of America's canal era and transportation history. The site is at the western terminus of the C&O Canal in Cumberland, Maryland. Through intervention and exploration a time honored ground is transformed to reflect on an American pastime, integrating it into a historical context

    Experimental Demonstration of Time-Delay Interferometry for the Laser Interferometer Space Antenna

    Full text link
    We report on the first demonstration of time-delay interferometry (TDI) for LISA, the Laser Interferometer Space Antenna. TDI was implemented in a laboratory experiment designed to mimic the noise couplings that will occur in LISA. TDI suppressed laser frequency noise by approximately 10^9 and clock phase noise by 6x10^4, recovering the intrinsic displacement noise floor of our laboratory test bed. This removal of laser frequency noise and clock phase noise in post-processing marks the first experimental validation of the LISA measurement scheme.Comment: 4 pages, 4 figures, to appear in Physical Review Letters end of May 201

    Recirculation of Laser Power in an Atomic Fountain

    Get PDF
    A new technique for laser-cooling atoms in a cesium atomic fountain frequency standard relies on recirculation of laser light through the atom-collection region of the fountain. The recirculation, accomplished by means of reflections from multiple fixed beam-splitter cubes, is such that each of two laser beams makes three passes. As described below, this recirculation scheme offers several advantages over prior designs, including simplification of the laser system, greater optical power throughput, fewer optical and electrical connections, and simplification of beam power balancing. A typical laser-cooled cesium fountain requires the use of six laser beams arranged as three orthogonal pairs of counter-propagating beams to decelerate the atoms and hold them in a three-dimensional optical trap in vacuum. Typically, these trapping/cooling beams are linearly polarized and are positioned and oriented so that (1) counter-propagating beams in each pair have opposite linear polarizations and (2) three of the six orthogonal beams have the sum of their propagation directions pointing up, while the other three have the sum of their propagation directions pointing down. In a typical prior design, two lasers are used - one to generate the three "up" beams, the other to generate the three "down" beams. For this purpose, the output of each laser is split three ways, then the resulting six beams are delivered to the vacuum system, independently of each other, via optical fibers. The present recirculating design also requires two lasers, but the beams are not split before delivery. Instead, only one "up" beam and one oppositely polarized "down" beam are delivered to the vacuum system, and each of these beams is sent through the collection region three times. The polarization of each beam on each pass through the collection region is set up to yield the same combination of polarization and propagation directions as described above. In comparison with the prior design, the present recirculating design utilizes the available laser light more efficiently, making it possible to trap more atoms at a given laser power or the same number of atoms at a lower laser power. The present design is also simpler in that it requires fewer optical fibers, fiber couplings, and collimators, and fewer photodiodes for monitoring beam powers. Additionally, the present design alleviates the difficulty of maintaining constant ratios among power levels of the beams within each "up" or "down" triplet

    Progress in Interferometry for LISA at JPL

    Full text link
    Recent advances at JPL in experimentation and design for LISA interferometry include the demonstration of Time Delay Interferometry using electronically separated end stations, a new arm-locking design with improved gain and stability, and progress in flight readiness of digital and analog electronics for phase measurements.Comment: 11 pages, 9 figures, LISA 8 Symposium, Stanford University, 201

    Techniques for Solution- Assisted Optical Contacting

    Get PDF
    A document discusses a solution-assisted contacting technique for optical contacting. An optic of surface flatness Lambda/20 was successfully contacted with one of moderate surface quality, or Lambda/4. Optics used were both ultra-low expansion (ULE) glass (Lambda/4 and Lambda/20) and fused silica (Lambda/20). A stainless steel template of the intended interferometer layout was designed and constructed with three contact points per optic. The contact points were all on a common side of the template. The entire contacting jig was tilted at about 30 . Thus, when the isopropanol was applied, each optic slid due to gravity, resting on the contact points. All of the contacting was performed in a relatively dusty laboratory. A number of successful contacts were achieved where up to two or three visible pieces of dust could be seen. These were clearly visible due to refraction patterns between the optic and bench. On a number of optics, the final step of dropping isopropyl between the surfaces was repeated until a successful contact was achieved. The new procedures realized in this work represent a simplification for optical contacting in the laboratory. They will both save time and money spent during the contacting process, and research and development phases. The techniques outlined are suitable for laboratory experiments, research, and initial development stages

    Laboratory Apparatus Generates Dual-Species Cold Atomic Beam

    Get PDF
    A laser cooling apparatus that generates a cold beam of rubidium and cesium atoms at low pressure has been constructed as one of several intermediate products of a continuing program of research on laser cooling and atomic physics. Laser-cooled atomic beams, which can have temperatures as low as a microkelvin, have been used in diverse applications that include measurements of fundamental constants, atomic clocks that realize the international standard unit of time, atom-wave interferometers, and experiments on Bose-Einstein condensation. The present apparatus is a prototype of one being evaluated for use in a proposed microgravitational experiment called the Quantum Interferometric Test of Equivalence (QuITE). In this experiment, interferometric measurements of cesium and rubidium atoms in free fall would be part of a test of Einstein s equivalence principle. The present apparatus and its anticipated successors may also be useful in other experiments, in both microgravity and normal Earth gravity, in which there are requirements for dual-species atomic beams, low temperatures, and low pressures. The apparatus includes a pyramidal magneto-optical trap in which the illumination is provided by multiple lasers tuned to frequencies characteristic of the two atomic species. The inlet to the apparatus is located in a vacuum chamber that contains rubidium and cesium atoms at a low pressure; the beam leaving through the outlet of the apparatus is used to transfer the atoms to a higher-vacuum (lower-pressure) chamber in which measurements are performed. The pyramidal magneto-optical trap is designed so that the laser cooling forces in one direction are unbalanced, resulting in a continuous cold beam of atoms that leak out of the trap (see figure). The radiant intensity (number of atoms per unit time per unit solid angle) of the apparatus is the greatest of any other source of the same type reported to date. In addition, this is the first such apparatus capable of producing a slow, collimated beam that contains two atomic species at the same time

    Rugged, Tunable Extended-Cavity Diode Laser

    Get PDF
    A rugged, tunable extended-cavity diode laser (ECDL) has been developed to satisfy stringent requirements for frequency stability, notably including low sensitivity to vibration. This laser is designed specifically for use in an atomic-clock experiment to be performed aboard the International Space Station (ISS). Lasers of similar design would be suitable for use in terrestrial laboratories engaged in atomic-clock and atomic-physics research

    High-Speed Digital Interferometry

    Get PDF
    Digitally enhanced heterodyne interferometry (DI) is a laser metrology technique employing pseudo-random noise (PRN) codes phase-modulated onto an optical carrier. Combined with heterodyne interferometry, the PRN code is used to select individual signals, returning the inherent interferometric sensitivity determined by the optical wavelength. The signal isolation arises from the autocorrelation properties of the PRN code, enabling both rejection of spurious signals (e.g., from scattered light) and multiplexing capability using a single metrology system. The minimum separation of optical components is determined by the wavelength of the PRN code
    corecore